Deterministic identity testing paradigms for bounded top-fanin depth-4 circuits

Pranjal Dutta (NUS and Oxford), Prateek Dwivedi (IIT K), Nitin Saxena (IIT K)

Polynomial Identity Testing

- Blackbox
 - Quasi-poly time PIT for $\Sigma^{[0(1)]}\Pi\Sigma\Pi^{[0(1)]}$ and $\Sigma^{[0(1)]}\Pi\Sigma \wedge$ circuits.
- Whitebox
 - Poly time PIT for $\Sigma^{[0(1)]}\Pi\Sigma \wedge$ circuits.

Prelude

Natural Queries

Given a polynomial f,

- Evaluate it at $x_1 = a_1, \dots, x_n = a_n$.
- For some polynomial g, compute f + g and $f \times g$.
- Find the factors of f.
- For some polynomial g, test g = f.

Identity Testing

For some polynomial g, test g = f.

- Same coefficients, $\alpha_{\bar{e}} = \beta_{\bar{e}}$?
- Alternatively, check if all coefficients are zero in f g.

That's simple, but not efficient.

Number of coefficients = $\binom{n+d}{d} \approx \text{EXP}(n, d)$.

$$f = \sum \alpha_{\bar{e}} \cdot \prod_{j \in [n]} x_j^{e_j}$$

$$g = \sum \beta_{\bar{e}} \cdot \prod_{j \in [n]} x_j^{e_j}$$

Representing Multivariate Polynomials

- Algebraic Circuits
 - Intuitive. Succinct.
 - Operations are easy.
 - Most algebraic problems naturally fit into the framework.

Size = Number of gates = 4

Polynomial Identity Testing

- Whitebox.
- Blackbox.
 - PIT is efficient with randomness.

Efficient Randomized algorithm

PIT Lemma

Let S be a subset of field. For $f \neq 0$ and some random $\overline{a} \in S^n$ $\Pr[f(\overline{a}) = 0] \leq \frac{d}{|S|}$.

- Randomized algorithm: Consider set S of size more than (d + 1).
- Also gives a $poly(d^n)$ time deterministic algorithm.

Why do we care?

- Algorithms
- Complexity Theory
- Lower Bounds
 - PIT is intrinsically connected to proving circuit lower bounds.

State of Affairs

- Nothing better than exponential known for **general** algebraic circuits.
- **Constant depth** circuits in **SUBEXP** algorithm. [LST21]
- Efficient algorithm are there for very restricted circuits.

- Nothing better than SUBEXP is known.
- Poly (and quasi-poly) time algorithms are found with various *restrictions*

[AV08] Manindra Agrawal V. Vinay

Variables

PIT on Depth Restricted Circuits

 $\Sigma^{[k]}\Pi\Sigma\Pi^{[\delta]}$

- Promising model.
- Poly (and quasi-poly) time algorithms are found with various *restrictions* on the depth-4 model.
- Bounded top and bottom fanin.

Paper	Restriction	PIT
Saxena and Seshadhri	$\delta = 1$	$poly(n, d^k)$
Beecken, Mittmann and Saxena	Bounded trdeg	poly(s ^k) (k=trdeg bound)
Agarwal, Saha, Saptharishi and Saxena	Bounded top- fanin, multilinear	$\operatorname{poly}(s^{k^2})$
Kumar and Saraf	Low individual deg	QP(n)
	Bounded local trdeg and bottom fanin	QP(n)
Peleg and Shpilka	$k = 3, \delta = 2$	poly(n, d)

Results

Theorem [DuttaDSaxena21]

For constant k, δ there is a quasi-poly time blackbox PIT algorithm for $\Sigma^{[k]}\Pi\Sigma\Pi^{[\delta]}$ circuits.

- For size *s* circuit we give $s^{O(\delta^2 \cdot k \cdot \log s)}$ time deterministic algorithm.
- The algorithm is quasi-poly even up to $k, \delta = poly(\log s)$.

PIT on $\Sigma^{[k]}\Pi\Sigma$ \wedge circuits

 $\Sigma^{[k]}\Pi\Sigma \wedge$

- Sum of product of sum of univariates.
- Deterministic PIT was open since 2013 [SSS13].

[SSS13] Chandan Saha, Ramprasad Saptharishi, Nitin Saxena

Blackbox PIT of $\Sigma^{[k]}\Pi\Sigma \wedge \text{circuits}$

Theorem [DuttaDSaxena21]

For constant k there is a quasi-poly time blackbox PIT algorithm for $\Sigma^{[k]}\Pi\Sigma \wedge \text{circuits}$.

- For size s circuit we give s^{O(k·log log s)} time deterministic algorithm.
- Faster than our $\Sigma^{[k]}\Pi\Sigma\Pi^{[\delta]}$ PIT algo.

Whitebox PIT of $\Sigma^{[k]}\Pi\Sigma \wedge \text{circuits}$

Theorem [DuttaDSaxena21]

For constant k there is a poly time whitebox PIT algorithm for $\Sigma^{[k]}\Pi\Sigma \wedge \text{circuits}$.

• For size *s* circuit we give $s^{O(k \cdot 7^k)}$ time deterministic algorithm.

Proof Overview

DiDI Technique on $\Sigma^{[k]}\Pi\Sigma \wedge \text{circuits}$

$$\int \text{Problem} \left(\Sigma^{[k]} \Pi \Sigma \land \text{PIT} \right)$$

Test
$$f = T_1 + T_2 + \cdots T_k \stackrel{?}{=} 0$$

where $T_i \in \Pi \Sigma \wedge \text{ of } \deg \leq d$.

- Divide and Derive inductively. Top $\Pi \rightarrow \Lambda$.
- Primal Idea: $g(X) \neq 0 \iff g'(X) \neq 0 \text{ or } g(0) \neq 0$
- $\Sigma \wedge \Sigma \wedge$ has a poly-time whitebox PIT.

Jacobian hits for $\Sigma^{[k]}\Pi\Sigma\Pi^{[\delta]}$ blackbox PIT

- Faithful map Φ follows from Hitting set of $\Sigma \wedge \Sigma \Pi^{[\delta]}$ -circuit.
- $\Phi(f)$ is essentially k variate.

Open Problems

Open Problems

- Design a poly-time algorithm for $\Sigma \wedge \Sigma \Pi^{[\delta]}$ -circuits.
 - It will place PIT of $\Sigma^{[k]}\Pi\Sigma\Pi^{[\delta]}$ in **P**.
- Solve PIT for $\Sigma^{[k]}\Pi\Sigma \Lambda^{[2]}$ sum of product of sum of **bivariate** fed into top product gate.
- Improve the dependence on k for $\Sigma^{[k]}\Pi\Sigma$ \wedge whitebox PIT.
 - Currently it is exponential in k.


```
Definition [Hitting Set]
```

A set $\mathcal{H} \subseteq \mathbb{F}^n$ which certifies the non-zeroness of class \mathcal{C} of polynomials.

$$\forall f \neq 0 \in \mathcal{C}, \qquad \exists \overline{a} \in \mathcal{H} : f(\overline{a}) \neq 0$$

• Blackbox PIT \leftrightarrow Hitting Set.

Lemma [Trivial Hitting Set]

For a class of n-variate, deg d polynomials, there exists an explicit hitting set of size $poly(d^n)$

- Suffices when n = O(1).
- Offers a general framework for PIT algorithms.
 - Design a variable reducing non-zeroness preserving map.

Recapitulation of $\Sigma^{[k]}\Pi\Sigma\Pi^{[\delta]}$ blackbox PIT

Use PIT Lemma for final Hitting Set of

 $\Phi(f)$

Faithful homomorphism

• Set of polynomials $\overline{T} = \{T_1, \dots, T_m\}$ in $\mathbb{F}[\overline{x}]$ are *algebraically*

dependent if there is an non-zero *annihilator* A such that $A(\overline{T}) = 0$.

- Transcendence Degree (trdeg): Size of the largest subset of $S \subseteq \overline{T}$ which is alg. independent.
 - S is called the *Transcendence Basis*.

Faithful homomorphism

Definition [Faithful hom.]

 $\Phi: \mathbb{F}[\bar{x}] \to \mathbb{F}[\bar{y}] \text{ such that} \\ \operatorname{trdeg}_{\mathbb{F}}(\bar{T}) = \operatorname{trdeg}_{\mathbb{F}}(\Phi(\bar{T})).$

Theorem [Faithful is useful]

For any $C \in \mathbb{F}[y_1, \dots, y_k]$,

$$C(\overline{T}) = 0 \iff C(\Phi(\overline{T})) = 0.$$

Recapitulation of $\Sigma^{[k]}\Pi\Sigma\Pi^{[\delta]}$ blackbox PIT

Use PIT Lemma for final Hitting Set of

 $\Phi(f)$

Jacobian Hits (Again)

• Jacobian $\mathcal{J}_{\bar{x}}(\bar{T})$ is a $k \times n$ matrix.

$$\mathcal{J}_{\bar{x}}(\bar{T}) = \left(\partial_{x_j}(T_i)\right)_{k \times n} = \begin{bmatrix} \partial_{x_1}(T_1) & \cdots & \partial_{x_n}(T_1) \\ \vdots & \ddots & \vdots \\ \partial_{x_1}(T_m) & \cdots & \partial_{x_n}(T_k) \end{bmatrix}$$

• Linear rank captures the alg. rank.

Theorem [Beecken Mittmann Saxena]

```
Jacobian Criterion: For large char \mathbb{F},
```

$$\operatorname{trdeg}_{\mathbb{F}}(\overline{T}) = \operatorname{rank}_{\mathbb{F}(\overline{x})}\mathcal{J}_{\overline{x}}(\overline{T})$$

Jacobian Hits (Again)

- Jacobian offers the recipe of *faithful* map.
- Let $\Psi' \colon \mathbb{F}[\bar{x}] \to \mathbb{F}[\bar{z}]$ such that

$$\operatorname{rank}_{\mathbb{F}(\bar{x})}\mathcal{J}_{\bar{x}}(\bar{T}) = \operatorname{rank}_{\mathbb{F}(\bar{z})}\Psi'(\mathcal{J}_{\bar{x}}(\bar{T})).$$

Theorem [ASSS16*]

For large char \mathbb{F} , the map $\Phi: \mathbb{F}[\bar{x}] \to \mathbb{F}[z, \bar{y}, t]$ defined as

$$x_i \to \left(\sum_j y_j t^{ij}\right) + \Psi'(x_i)$$

is *faithful* for $T_1, \ldots T_k$.

*Agarwal, Saha, Saptharishi and Saxena

Recapitulation of $\Sigma^{[k]}\Pi\Sigma\Pi^{[\delta]}$ blackbox PIT

Homomorphism Ψ

- Let T_1, \ldots, T_k is the tr-basis.
- Let $J_{\bar{x}}(\bar{T}) = \operatorname{Det} \mathcal{J}_{\bar{x}}(\bar{T})$,
 - To preserve rank, ensure determinant is non-zero.

•
$$T_i = \prod_j g_{ij}$$
 and $L(T_i) = \{g_{ij} | j\}.$

$$J_{\bar{x}}(\bar{T}) = T_1 \dots T_k \sum_{g_1 \in L(T_1), \dots, g_k \in L(T_k)} \frac{J_{\bar{x}}(g_1, \dots, g_k)}{g_1 \cdots g_k}$$

$$\mathcal{J}_{\bar{x}}(\bar{T}) = \left(\partial_{x_j}(T_i)\right)_{k \times k}$$

Homomorphism $\boldsymbol{\Psi}$

• Consider an $\bar{\alpha} = (a_1, \dots, a_n) \subseteq \mathbb{F}^n$ such that $g(\bar{\alpha}) \neq 0$ for all

 $g \in \bigcup_i L(T_i)$. Find it using PIT for sparse polynomials.

• Define $\Psi: \mathbb{F}[\bar{x}] \to \mathbb{F}[\bar{x}, z]$ such that

 $x_i \mapsto z \cdot x_i + a_i$.

$$\Psi(J_{\bar{x}}(\bar{T})) = \Psi(T_1 \dots T_k) \boxed{\sum_{(\cdot)} \frac{\Psi(J_{\bar{x}}(g_1, \dots, g_k))}{\Psi(g_1 \cdots g_k)}}$$
F

Homomorphism $\boldsymbol{\Psi}$

Define
$$\mathcal{R} = \mathbb{F}[z_1]/\langle z_1^D \rangle$$
 where $D = \deg(f) + 1$.

- Since $J_{\bar{x}}(\bar{T}) \neq 0$, then $F \neq 0$ over $\mathcal{R}[\bar{x}]$.
- Construct a set $H' \subseteq \mathbb{F}^n: \Psi(J_{\bar{x}}(\bar{T}))|_{\bar{x}=\bar{a}} \neq 0$ for some $\bar{a} \in H'$.
- For this we construct a hitting-set for F.

Recapitulation of $\Sigma^{[k]}\Pi\Sigma\Pi^{[\delta]}$ blackbox PIT

Towards extending Ψ to Ψ'

$$\Psi(J_{\bar{x}}(\bar{T})) = \Psi(T_1 \dots T_k) \sum_{(\cdot)} \frac{\Psi(J_{\bar{x}}(g_1, \dots, g_k))}{\Psi(g_1 \cdots g_k)}$$

Claim [Nice Property]

Over $\mathcal{R}[\bar{x}]$, F can be computed by $\Sigma \wedge \Sigma \Pi^{[\delta]}$ -circuit of size $(s \cdot 3^{\delta})^{O(k)}$.

- $F = P(\bar{x}, z)/Q$ where $Q \in \mathbb{F}$.
- Degree of P wrt z remains polynomially bounded.

$\Sigma \wedge \Sigma \Pi^{[\delta]}$ - sum of powers of (degree δ) sparse polynomials.

Towards extending Ψ to Ψ'

- Essentially, H' will be the hitting-set for 'small' size $\Sigma \wedge \Sigma \Pi^{[\delta]}$.
- [Forbes15] gave the hitting set for the class.
- Use that to conclude that $\overline{b} \in H' \subseteq \mathbb{F}^n$ such that $P(\overline{b}, \overline{z}) \neq 0$ is of size $s^{O(\delta^2 \cdot k \cdot \log s)}$.
- H' fixes \bar{x} in Ψ and gives $\Psi' \colon \mathbb{F}[\bar{x}] \to \mathbb{F}[z]$

 $x_i \mapsto z \cdot b_i + a_i.$

Recapitulation of $\Sigma^{[k]}\Pi\Sigma\Pi^{[\delta]}$ blackbox PIT

- Faithful map Φ follows from Hitting set of $\Sigma \wedge \Sigma \Pi^{[\delta]}$ -circuit.
- Therefore, $\Phi(f)$ is essentially k + 3 variate.

