Deterministic identity testing paradigms for bounded top-fanin depth-4 circuits

Pranjal Dutta (NUS and Oxford), Prateek Dwivedi (IIT K), Nitin Saxena (IIT K)

Polynomial Identity Testing

- Blackbox
	- Quasi-poly time PIT for $\Sigma^{[O(1)]}\Pi\Sigma\Pi^{[O(1)]}$ and $\Sigma^{[O(1)]}\Pi\Sigma$ Λ circuits.
- Whitebox
	- Poly time PIT for $\Sigma^{[O(1)]}\Pi\Sigma \wedge$ circuits.

Prelude

Natural Queries

Given a polynomial f ,

- Evaluate it at $x_1 = a_1, ..., x_n = a_n$.
- For some polynomial q , compute $f + g$ and $f \times g$.
- Find the factors of f .
- For some polynomial g, test $g = f$.

Identity Testing

For some polynomial g, test $g = f$.

- Same coefficients, $\alpha_{\bar{e}} = \beta_{\bar{e}}$?
- Alternatively, check if all coefficients are zero in $f - g$.

That's simple, but not efficient.

Number of coefficients = $\binom{n+d}{d}$ $\binom{+a}{d} \approx \text{EXP}(n, d).$

$$
f = \sum \alpha_{\bar{e}} \cdot \prod_{j \in [n]} x_j^{e_j}
$$

$$
g = \sum \beta_{\bar{e}} \cdot \prod_{j \in [n]} x_j^{e_j}
$$

Representing Multivariate Polynomials

- Algebraic Circuits
	- Intuitive. Succinct.
	- Operations are easy.
	- Most algebraic problems naturally fit into the framework.

Size = Number of gates = 4

Polynomial Identity Testing

- Whitebox.
- Blackbox.
	- PIT is efficient with randomness.

Efficient Randomized algorithm

Let S be a subset of field. For $f \neq 0$ and some random $\overline{a} \in S^n$ $Pr[f(\overline{a})=0] \leq$ \boldsymbol{d} \mathcal{S}_{0} .

- Randomized algorithm: Consider set S of size more than $(d + 1)$.
- Also gives a $poly(d^n)$ time deterministic algorithm.

Why do we care?

- Algorithms
- Complexity Theory
- Lower Bounds
	- PIT is intrinsically connected to proving circuit lower bounds.

State of Affairs

- Nothing better than exponential known for **general** algebraic circuits.
- Constant depth circuits in SUBEXP algorithm. [LST21]
- Efficient algorithm are there for very restricted circuits.

- Π • Nothing better than SUBEXP is known.
- Poly (and quasi-poly) time algorithms are found with various *restrictions*

[AV08] Manindra Agrawal V. Vinay

×

Variables

PIT on Depth Restricted Circuits

$\Sigma^{[k]} \Pi \Sigma \Pi^{[\delta]}$

- Promising model.
- Poly (and quasi-poly) time algorithms are found with various *restrictions* on the depth-4 model.
- Bounded top and bottom fanin.

Results

Theorem [DuttaDSaxena21]

For constant k , δ there is a quasi-poly time blackbox PIT algorithm for $\Sigma^{[k]} \Pi \Sigma \Pi^{[\delta]}$ circuits.

- For size s circuit we give $s^{O(\delta^2 \cdot k \cdot log s)}$ time deterministic algorithm.
- The algorithm is quasi-poly even up to $k, \delta = \text{poly}(\log s)$.

PIT on $\mathbf{\Sigma}^{[k]}$ **ΠΣ** \wedge circuits

 $\Sigma^{[k]}$ ΠΣ Λ

- Sum of product of sum of *univariates*.
- Deterministic PIT was open since 2013 [SSS13].

[SSS13] Chandan Saha, Ramprasad Saptharishi, Nitin Saxena

Blackbox PIT of $\Sigma^{[k]} \Pi \Sigma \wedge$ circuits

Theorem [DuttaDSaxena21]

For constant k there is a quasi-poly time blackbox PIT algorithm for $\Sigma^{[\mathrm{k}]}$ ΠΣ Λ circuits.

- For size s circuit we give $s^{O(k\cdot log\ log\ s)}$ time deterministic algorithm.
- Faster than our $\Sigma^{[k]} \Pi \Sigma \Pi^{[\delta]}$ PIT algo.

Whitebox PIT of $\Sigma^{[k]} \Pi \Sigma$ Λ circuits

Theorem [DuttaDSaxena21]

For constant k there is a poly time whitebox PIT algorithm for $\Sigma^{[\mathrm{k}]}$ ΠΣ Λ circuits.

• For size s circuit we give $s^{O(k \cdot 7^k)}$ time deterministic algorithm.

Proof Overview

DiDI Technique on $\Sigma^{[k]}$ ΠΣ Λ circuits

Test $f = T_1 + T_2 + \cdots T_k = 0$? Problem ($\Sigma^{[k]}$ ΠΣ Λ ΡΙΤ)

where $T_i \in \Pi \Sigma \wedge \sigma f \deg \leq d$.

- Divide and Derive inductively. Top $\Pi \to \Lambda$.
- Primal Idea: $g(X) \neq 0 \Leftrightarrow g'(X) \neq 0$ or $g(0) \neq 0$
- Σ \wedge Σ \wedge has a poly-time whitebox PIT.

Jacobian hits for $\Sigma^{[k]} \Pi \Sigma \Pi^{[\delta]}$ blackbox PIT

- Faithful map Φ follows from Hitting set of $\Sigma \wedge \Sigma \Pi^{[\delta]}$ -circuit.
- $\Phi(f)$ is essentially k variate.

21

Open Problems

Open Problems

- Design a poly-time algorithm for $\Sigma \wedge \Sigma \Pi^{[\delta]}$ -circuits.
	- It will place PIT of $\Sigma^{[k]} \Pi \Sigma \Pi^{[\delta]}$ in P.
- Solve PIT for $\Sigma^{[k]} \Pi \Sigma \Lambda^{[2]}$ sum of product of sum of **bivariate** fed into top product gate.
- Improve the dependence on k for $\Sigma^{[k]} \Pi \Sigma$ A whitebox PIT.
	- Currently it is exponential in k .

Definition [Hitting Set]

A set $\mathcal{H} \subseteq \mathbb{F}^n$ which certifies the non-zeroness of class $\mathcal C$ of polynomials.

$$
\forall f \neq 0 \in \mathcal{C}, \qquad \exists \bar{a} \in \mathcal{H} : f(\bar{a}) \neq 0
$$

• Blackbox PIT ↔ Hitting Set*.*

Lemma [Trivial Hitting Set]

For a class of *n*-variate, deg d polynomials, there exists an explicit hitting set of size $\text{poly}(d^n)$

- Suffices when $n = O(1)$.
- Offers a general framework for PIT algorithms.
	- Design a variable reducing non-zeroness preserving map.

Recapitulation of $\Sigma^{[k]} \Pi \Sigma \Pi^{[\delta]}$ blackbox PIT

Faithful homomorphism

• Set of polynomials $\overline{T} = \{T_1, ..., T_m\}$ in $\mathbb{F}[\overline{x}]$ are *algebraically*

dependent if there is an non-zero *annihilator* A such that $A(\overline{T}) = 0$.

- Transcendence Degree (trdeg): Size of the largest subset of $S \subseteq \overline{T}$ which is alg. independent.
	- S is called the *Transcendence Basis*.

Faithful homomorphism

Definition [Faithful hom.]

 $\Phi: \mathbb{F}[\bar{x}] \to \mathbb{F}[\bar{y}]$ such that trdeg_F (\bar{T}) = trdeg_F $(\Phi(\bar{T}))$.

Theorem [Faithful is useful]

For any $C \in \mathbb{F}[y_1, ..., y_k],$

$$
C(\overline{T})=0 \Leftrightarrow C(\Phi(\overline{T}))=0.
$$

Recapitulation of $\Sigma^{[k]} \Pi \Sigma \Pi^{[\delta]}$ blackbox PIT

 Φ : $\mathbb{F}[\bar{x}] \to \mathbb{F}[z, \bar{y}, t]$

Use PIT Lemma for final Hitting Set of $\Phi(f)$

Jacobian Hits (Again)

• Jacobian $\mathcal{J}_{\bar{x}}(\bar{T})$ is a $k \times n$ matrix.

$$
\mathcal{J}_{\bar{x}}(\bar{T}) = \left(\partial_{x_j}(T_i)\right)_{k \times n} = \begin{bmatrix} \partial_{x_1}(T_1) & \cdots & \partial_{x_n}(T_1) \\ \vdots & \ddots & \vdots \\ \partial_{x_1}(T_m) & \cdots & \partial_{x_n}(T_k) \end{bmatrix}
$$

• Linear rank captures the alg. rank.

Theorem [Beecken Mittmann Saxena]

```
Jacobian Criterion: For large char F,
```
trdeg_F (
$$
\overline{T}
$$
) = rank_{F(\overline{x})} $\mathcal{J}_{\overline{x}}(\overline{T})$

Jacobian Hits (Again)

- Jacobian offers the recipe of *faithful* map.
- Let Ψ' : $\mathbb{F}[\bar{x}] \to \mathbb{F}[\bar{z}]$ such that

$$
\operatorname{rank}_{\mathbb{F}(\bar{x})}\mathcal{J}_{\bar{x}}(\bar{T}) = \operatorname{rank}_{\mathbb{F}(\bar{z})}\Psi'(\mathcal{J}_{\bar{x}}(\bar{T})).
$$

Theorem [ASSS16*]

For large char F, the map $\Phi: \mathbb{F}[\bar{x}] \to \mathbb{F}[z, \bar{y}, t]$ *defined as*

$$
x_i \rightarrow \left(\sum_j y_j t^{ij}\right) + \Psi'(x_i)
$$

is *faithful* for T_1 , ... T_k .

**Agarwal, Saha, Saptharishi and Saxena*

Recapitulation of $\Sigma^{[k]} \Pi \Sigma \Pi^{[\delta]}$ blackbox PIT

Homomorphism Ψ

- Let T_1 , ..., T_k is the tr-basis.
- Let $J_{\bar{x}}(\overline{T}) = \mathrm{Det} \, \mathcal{J}_{\bar{x}}(\overline{T}),$
	-

 $\displaystyle\mathcal{J}_{\bar{\chi}}(\bar{T})=\ \bigl(\,\partial_{x_{\bar{j}}}(T_i)\bigr)$

• To preserve rank, ensure determinant is non-zero.

•
$$
T_i = \prod_j g_{ij}
$$
 and $L(T_i) = \{g_{ij} | j\}.$

$$
J_{\bar{x}}(\bar{T}) = T_1 \dots T_k \sum_{g_1 \in L(T_1), \dots g_k \in L(T_k)} \frac{J_{\bar{x}}(g_1, \dots, g_k)}{g_1 \cdots g_k}
$$

 $k\times k$

Homomorphism Ψ

• Consider an $\bar{\alpha} = (a_1, ..., a_n) \subseteq \mathbb{F}^n$ such that $g(\bar{\alpha}) \neq 0$ for all

 $g \in U_i L(T_i)$. Find it using PIT for sparse polynomials.

• Define $\Psi: \mathbb{F}[\bar{x}] \to \mathbb{F}[\bar{x}, z]$ such that

 $x_i \mapsto z \cdot x_i + a_i.$

$$
\Psi(j_{\bar{x}}(\bar{T})) = \Psi(T_1 \dots T_k) \underbrace{\left\{ \frac{\Psi(j_{\bar{x}}(g_1, \dots, g_k))}{\Psi(g_1 \cdots g_k)} \right\} \cdot \frac{\Psi(j_{\bar{x}}(g_1, \dots, g_k))}{F}
$$

Homomorphism Ψ

Define
$$
\mathcal{R} = \mathbb{F}[z_1]/\langle z_1^D \rangle
$$
 where $D = \deg(f) + 1$.

- Since $I_{\bar{Y}}(\overline{T}) \neq 0$, then $F \neq 0$ over $\mathcal{R}[\bar{x}]$.
- Construct a set $H' \subseteq \mathbb{F}^n$: $\Psi\bigl(J_{\bar x}(\bar T)\bigr)\big|_{\bar x=\bar a}$ $\neq 0$ for some $\bar{a} \in H'$.
- For this we construct a hitting-set for F.

Recapitulation of $\Sigma^{[k]} \Pi \Sigma \Pi^{[\delta]}$ blackbox PIT

Towards extending Ψ to Ψ′

$$
\Psi(J_{\bar{x}}(\overline{T})) = \Psi(T_1 \dots T_k) \sum_{(.)} \frac{\Psi(J_{\bar{x}}(g_1, \dots, g_k))}{\Psi(g_1 \cdots g_k)}
$$

F

Claim [Nice Property]

Over $\mathcal{R}[\bar{x}]$, F can be computed by Σ Λ ΣΠ $^{[\delta]}$ -circuit of size $s\cdot 3^{\delta}$ $O(k)$.

- $F = P(\bar{x}, z)/Q$ where $Q \in \mathbb{F}$.
- Degree of P wrt z remains polynomially bounded.

$\Sigma \wedge \Sigma \Pi^{[\delta]}$ - sum of powers of (degree δ) sparse polynomials.

Towards extending Ψ to Ψ′

- Essentially, H' will be the hitting-set for 'small' size $\Sigma \wedge \Sigma \Pi^{[\delta]}$.
- [Forbes15] gave the hitting set for the class.
- Use that to conclude that $\overline{b} \in H' \subseteq \mathbb{F}^n$ such that $P(\overline{b}, \overline{z}) \neq 0$ is of size $s^{O(\delta^2 \cdot k \cdot \log s)}$.
- H' fixes \bar{x} in Ψ and gives $\Psi' : \mathbb{F}[\bar{x}] \to \mathbb{F}[z]$

 $x_i \mapsto z \cdot b_i + a_i.$

Recapitulation of $\Sigma^{[k]} \Pi \Sigma \Pi^{[\delta]}$ blackbox PIT

- Faithful map Φ follows from Hitting set of $\Sigma \wedge \Sigma \Pi^{[\delta]}$ -circuit.
- Therefore, $\Phi(f)$ is essentially $k + 3$ variate.

