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Polynomials

• Algebraic Objects 𝑓( ҧ𝑥) ∈ 𝔽[𝑥1, … , 𝑥𝑛].

• deg 𝑓 = 𝑑. Then, σ𝑗 𝑒𝑗 ≤ 𝑑.

• A class of functions which has many classical 

applications. 

What is the efficient way to compute a family of 
polynomials?

Question

• To use algebraic tools for our aid, we need a robust 
computational model for polynomials.

𝑓1 = 𝑥1 + 𝑥2
2

𝑓2 = 1 + 𝑥1 1 + 𝑥2 ⋯(1 + 𝑥𝑛)

𝑓3 = 

𝜎∈𝑆𝑛

𝑠𝑖𝑔𝑛 𝜎 ⋅ 𝑥1𝜎 1 ⋯𝑥𝑛𝜎 𝑛

𝑓 = 

ҧ𝑒=(𝑒1,…,𝑒𝑛)

𝛼 ҧ𝑒 ⋅ ෑ

𝑗∈[𝑛]

𝑥
𝑗

𝑒𝑗
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Algebraic Circuits

• Directed Acyclic Graph. Compact representation of 

polynomials.

• Resources: Size and Depth

Size of the smallest circuit computing the 
polynomial. Denoted by size(𝑓).

Definition (Algebraic Complexity)

• Valiant (1977) formalized the notion computation using 

Algebraic Circuits.

• Circuit resources define Algebraic Complexity Classes.

𝑓1 = 𝑥1
2 + 𝑥2

2 + 2𝑥1𝑥2

𝑥1 𝑥2

× × ×

+

2

Source

Internal Nodes

Sink

𝔽[𝑥1, 𝑥2] ∋

Size: 15
Depth: 3
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Algebraic Circuits

• Directed Acyclic Graph. Compact representation of 

polynomials.

• Resources: Size and Depth

Size of the smallest circuit computing the 
polynomial. Denoted by size(𝑓).

Definition (Algebraic Complexity)

𝑓1 = 𝑥1
2 + 𝑥2

2 + 2𝑥1𝑥2 = 𝑥1 + 𝑥2
2

𝑥1 𝑥2

+

×

𝔽[𝑥1, 𝑥2] ∋

Size: 8
Depth: 3

• Valiant [Val77] formalized the notion computation using 

Algebraic Circuits.

• Circuit resources define Algebraic Complexity Classes.



6

Algebraic Complexity Classes

VP

VNP

• VP: Easy polynomials.

• n-variate polynomials of poly(n) degree and 

poly(n) circuit complexity.

• Example: Determinant.

• VNP: Hard polynomials

• σ VP, exponential sum.

• Example: Permanent.

• VF: Easy polynomials computable by Formulas.

• Formulas are circuits without reuse of output of 

nodes.

VF
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Valiant’s Conjecture

VP ≠VNP

Valiant’s Conjecture 

• To resolve it, show that Permanent is not an easy 

polynomial.

VP

VNP

VF
Perm𝑛 = 

𝜎∈𝑆𝑛

𝑥1𝜎 1 ⋅ 𝑥2𝜎(2)⋯𝑥𝑛𝜎 𝑛

• More structure means easier to prove separation.

• Since algebra has more structure than Boolean, VP vs VNP 

should be ‘easier’ than P vs NP.
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Evidences for Valiant Conjecture

VP=VNP implies* P/poly = NP/poly

Bürgisser 1998

*Assuming Generalized Riemann Hypothesis 

• VP ≠ VNP is consistent with our belief P/poly ≠ NP/poly.

• In a relationless world they are separated.

In non-associative, commutative world VP ≠ VNP

Hrubeš, Wigderson, Yehudayoff 2010

In symmetric circuits, VP ≠ VNP

Dawar, Wilsenach 2020
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Algebraic Branching Programs (ABP)

• Layered directed Acyclic Graph.

• Edge Labels are linear polynomials in input 

variables.

• Another compact representation of polynomials.

• Resources: Size, Width, and Depth

• Complexity: Size of the smallest ABP computing the 

polynomial.

• VBP: Easy polynomials computable by small size ABP.

𝑓 = 

𝑝𝑎𝑡ℎ 𝛾:𝑠→𝑡

𝑤𝑡(𝛾)

Product of edge 
weights

𝑓 = 𝑥2𝑥3

𝑥1

𝑥1

−𝑥3
𝑥2

−1

𝑠 𝑡
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Algebraic Branching Programs

VF ⊆ VBP ⊆ VP

Nisan 1991

VBP

VP

VF

VNP

• ABP is a restriction on the circuit.

• More such interesting restriction?

• VBP𝑘: Bounded width ABPs.

VBP2 ≠ VBP3 = VBP𝑘 =VF  ⊆ VBP ⊆ VP

Ben-Or and Cleve 1992
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Algebraic Branching Programs

VBP

VP

VBP3 = VF

VNP

• Strict containment is Open.

VF ⊆ VBP ⊆ VP

Nisan 1991

• ABP is a restriction on the circuit.

• More such interesting restriction?

• VBP𝑘: Bounded width ABPs.

VBP2 ≠ VBP3 = VBP𝑘 =VF  ⊆ VBP ⊆ VP

Ben-Or and Cleve 1992
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Motivating Example

• Let C compute polynomial 𝑓 ҧ𝑥, 𝑦 ∈ 𝔽[𝑥1, … , 𝑥𝑛, 𝑦].

• deg𝑦(𝑓) = 𝑑.

𝑓 ҧ𝑥, 𝑦 = 𝑓0 ҧ𝑥 + 𝑓1 ҧ𝑥 ⋅ 𝑦 + ⋯+ 𝑓𝑑 ҧ𝑥 ⋅ 𝑦𝑑

For all 𝑖 ∈ 𝑑 , size 𝑓𝑖 ≤ size 𝑓 ⋅ (𝑑 + 1)

Interpolation

𝑓

𝑥1 ⋯ 𝑥𝑛 𝑎1

𝑓

𝑥1 ⋯ 𝑥𝑛 𝑎𝑑+1

⋯

+

𝑏1 𝑏𝑑+1

𝑓𝑖

• Each term is linear combination of 𝑓( ҧ𝑥, 𝑎𝑖).

• All the coefficients can be extracted in size 

Ο(size 𝑓 ⋅ 𝑑2).

• If 𝑓 ∈ VP, then 𝑓𝑖 ∈ VP.
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Motivating Example

• Consider a polynomial 𝑓 ҧ𝑥 ∈ 𝔽[𝑥1, … , 𝑥𝑛].

• deg 𝑓 = 𝑑

• Let 𝑝 be a positive integer. 

𝑝 = min
ത𝑎



𝑖∈[𝑛]

𝑎𝑖

𝑓( ҧ𝑥) = 

ത𝑎∈supp(𝑓)

𝐶ത𝑎 ⋅ 𝑥1
𝑎1𝑥2

𝑎2 ⋯𝑥𝑛
𝑎𝑛

ℎ( ҧ𝑥) = 
ത𝑏 =𝑝

𝐶ത𝑏 ⋅ 𝑥1
𝑏1𝑥2

𝑏2⋯𝑥𝑛
𝑏𝑛

size ℎ ≤ Ο size 𝑓 ⋅ 𝑑2

Interpolation
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Motivating Example

• We can do better if small error is tolerable.

• Consider a polynomial 𝑔 ∈ 𝔽(𝜀)[ ҧ𝑥] :

g 𝜀, ҧ𝑥 = 𝜀−𝑝 ⋅ 𝑓(𝜀 ⋅ 𝑥1, … , 𝜀 ⋅ 𝑥𝑛)

𝑓( ҧ𝑥) = 

ത𝑎∈supp(𝑓)

𝐶ത𝑎 ⋅ 𝑥1
𝑎1𝑥2

𝑎2 ⋯𝑥𝑛
𝑎𝑛

=

ത𝑎

𝐶ത𝑎 ⋅ 𝜀
σ𝑎𝑖−𝑝 ⋅ ҧ𝑥 ത𝑎

= ℎ ҧ𝑥 + Ο(𝜀)

size 𝑔 = size ℎ ≤ Ο size 𝑓

Approximation

ℎ( ҧ𝑥) = 
ത𝑏 =𝑝

𝐶ത𝑏 ⋅ 𝑥1
𝑏1𝑥2

𝑏2⋯𝑥𝑛
𝑏𝑛

𝜀−𝑝

×

𝑓

𝑥1

𝜀

⋯ 𝑥𝑛

𝜀

+Ο(𝜀)

• Recall, size ℎ ≤ Ο size 𝑓 ⋅ 𝑑2 .
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Algebraic Approximation

• A polynomial 𝑔 𝜀, ҧ𝑥 ∈ 𝔽(𝜀)[𝑥1, … , 𝑥𝑛] approximate 

𝑓 ҧ𝑥 ∈ 𝔽[𝑥1, … , 𝑥𝑛]

𝑔 𝜀, ҧ𝑥 = 𝑓 ҧ𝑥 + 𝜀 ⋅ 𝑄 𝜀, ҧ𝑥 .

• Where, 𝑄 𝜀, ҧ𝑥 ∈ 𝔽[𝜀][ ҧ𝑥].

• If 𝑔 is in circuit complexity class 𝒞 over 𝔽(𝜀) :

• We say, 𝑓 ∈ ҧ𝒞

• 𝑓 may not be in 𝒞

𝑔 ҧ𝑥

1

𝜀2

1

𝜀3 + 1

𝔽 𝜀 = ൘
𝑝(𝜀)

𝑞(𝜀) 𝑝, 𝑞 ≠ 0 ∈ 𝔽[𝜀]
Size of the smallest circuit approximating the 
polynomial. Denoted by size(𝑓).

Definition (Border Complexity)
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Algebraic Approximation

• Give a circuit which computes 𝑔(𝜀, ҧ𝑥) such that

𝑔 𝜀, ҧ𝑥 = 𝑓 ҧ𝑥 + 𝜀 ⋅ 𝑄 𝜀, ҧ𝑥 .

𝑔 ҧ𝑥

1

𝜀2

𝜀

𝜀3 + 1

𝔽 𝜀 = ൘
𝑝(𝜀)

𝑞(𝜀) 𝑝, 𝑞 ≠ 0 ∈ 𝔽[𝜀]

Given size 𝑓 = size 𝑔 , what is size(𝑓)?

Question

• Evaluate at 𝜀 = 0.

• Not legal due to 1/𝜀 terms in the circuit.

• lim
𝜀→0

𝑔 = 𝑓.

• But circuits cannot compute limits.
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Algebraic Closure

• Consider a complexity class 𝒞𝔽. E.g. VBP, VP, VNP etc.

• A polynomial 𝑓 ҧ𝑥 ∈ ҧ𝒞, if there is a 𝑔 𝜀, ҧ𝑥 ∈ 𝒞𝔽(𝜀)

such that

𝑔 𝜀, ҧ𝑥 = 𝑓 ҧ𝑥 + 𝜀 ⋅ 𝑄 𝜀, ҧ𝑥 .

• 𝑓 may not be in 𝒞𝔽.

ҧ𝒞 = 𝒞

Approximative Closure

• 𝒞 ⊆ ҧ𝒞, is trivial. The other direction is not.

𝑓( ҧ𝑥)

𝒞

𝒟
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Strengthened Valiant’s Conjecture

VP ⊈ VNP

Strengthened Valiant’s Conjecture 

• Resolving this conjecture would imply VP ≠ VNP.

• Because, VP ⊆ VNP and VP ⊆ VP.

• Natural to study the strength.

VP VNP

VP

VP = VP

Debordering 

?

• Question is open for most of the classes. E.g. VF, VP, VNP etc
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Debordering using Interpolation

𝑔 𝜀, ҧ𝑥 = 𝑔0 + 𝑔1 ⋅ 𝜀 + 𝑔2 ⋅ 𝜀
2 +⋯+ 𝑔𝑀 ⋅ 𝜀𝑀

𝑀 = Ο 2𝑠
2

Bürgisser 2004, 2020 

• Consider a polynomial 𝑓 ҧ𝑥 ∈ 𝔽[𝑥1, … , 𝑥𝑛] such 

that

• size 𝑓 = 𝑠.

𝑔 𝜀, ҧ𝑥 = 𝑓 ҧ𝑥 + 𝜀 ⋅ 𝑄(𝜀, ҧ𝑥)

• Interpolate to get 𝑔0 = 𝑓 ҧ𝑥 .

• size 𝑓 = exp(size 𝑓 )
size 𝑓 ≤ size 𝑓 ≤ exp(size 𝑓 )
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Known Debordering Results

𝔽(𝜀) 𝑥1, … , 𝑥𝑛 ∋ 𝑔 =

𝑖=1

𝑠

monomial 𝑖

× × ×

+
Σ

Π ⋯

Variables

top fan-in

• Σ[𝑠]Π = Σ[𝑠]Π
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Known Debordering Results

𝔽(𝜀) 𝑥1, … , 𝑥𝑛 ∋ 𝑔 =ෑ

𝑖=1

𝑠

lr.poly 𝑖

+ + +

×
Π

Σ ⋯

Variables

top fan-in

lr.poly = 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛

• Σ[𝑠]Π = Σ[𝑠]Π and ΠΣ = ΠΣ
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Known Debordering Results

• Σ[𝑠]Π = Σ[𝑠]Π and ΠΣ = ΠΣ

• In non-commutative realm VBP = VBP. 

• Nisan 1991, Forbes 2016
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Known Debordering Results

∧ ∧ ∧

+Σ

∧ ⋯

Addition Gates

Variables

Σ

top-fanin

𝔽(𝜀) 𝑥1, … , 𝑥𝑛 ∋ 𝑔 =

𝑖

𝑘

ℓ𝑖𝑗
𝑒𝑖• Σ[𝑠]Π = Σ[𝑠]Π and ΠΣ = ΠΣ

• In non-commutative realm VBP = VBP. 

• Nisan 1991

• Σ ∧ Σ ⊆ VBP
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Known Debordering Results

• Σ[𝑠]Π = Σ[𝑠]Π and ΠΣ = ΠΣ

• In non-commutative realm VBP = VBP. 

• Nisan 1991

• Σ ∧ Σ ⊆ VBP

• VBP2 ≠ VBP2 = VF. 

• Bringmann, Ikenmeyer, Zuiddam 2018

• In monotone setting VBP = VBP.

• Bläser, Ikenmeyer, Mahajan, Pandey, Saurabh 2020
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Depth-3 circuits Σ[𝑘]Π[𝑑]Σ

• Sum of product of linear terms.

• They cannot compute everything easily.

ℎ2 ҧ𝑥, ത𝑦 = 𝑥1 ⋅ 𝑦1 + 𝑥2 ⋅ 𝑦2

• ℎ2 cannot be computed by Σ[1]Π[𝑑]Σ.

• Regardless of 𝑑.

• Moreover, ℎ2 ∈ VBP.

• Σ[𝑘]ΠΣ ⊂ VBP.

𝔽 𝑥1, … , 𝑥𝑛 ∋ 𝑓 =

𝑖

𝑘

ෑ

𝑗

𝑑

ℓ𝑖𝑗

× × ×

+Σ

Π ⋯

Addition Gates

Variables

Σ

top-fanin

lr.poly = 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛
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Universality of Σ[𝑘]Π[𝑑]Σ

• Let 𝑓( ҧ𝑥) be homogeneous of degree 𝑑

polynomial.

𝔽(𝜀) 𝑥1, … , 𝑥𝑛 ∋ 𝑔 =

𝑖

𝑘

ෑ

𝑗

𝑑

ℓ𝑖𝑗

× × ×

+Σ

Π ⋯

Addition Gates

Variables

Σ

top-fanin

𝑓 ҧ𝑥 ∈ Σ[2]Π[𝐷]Σ
Where, 𝐷 = exp(𝑛, 𝑑).

Kumar 2020 

• Say D= poly(𝑛).

• What is the size 𝑓 ?

• Σ[𝑘]Π[𝐷]Σ ⊆ VNP?
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Debordering Σ[𝑘]Π[𝑑]Σ

𝔽(𝜀) 𝑥1, … , 𝑥𝑛 ∋ 𝑔 =

𝑖

𝑘

ෑ

𝑗

𝑑

ℓ𝑖𝑗

× × ×

+Σ

Π ⋯

Addition Gates

Variables

Σ

top-fanin

Σ[2]Π[𝐷]Σ ⊆ VBP
Where, 𝐷 = poly(𝑛).

Dutta, Dwivedi, Saxena 2021 

• Result holds for arbitrary constant 𝑘.

Σ[𝑘]Π[𝐷]Σ ≠ VBP
Where, 𝐷 = poly(𝑛).

Dutta, Saxena 2021 

• Exponential separation between Σ[𝑘+1]Π[𝑑]Σ

and Σ[𝑘]Π[𝑑]Σ
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Polynomial Identity Testing

𝑓1 = 𝑥1
2 + 𝑥2

2 + 2𝑥1𝑥2𝔽[𝑥1, 𝑥2] ∋

𝑥1 𝑥2

× × ×

+

2

Given a circuit 𝐶 over a field 𝔽, test if
𝐶 = 0.

PIT

• Whitebox.

• Blackbox ⟷ Hitting Set.

A set ℋ which certifies the non-zeroness of class 𝒞
of polynomials.

∀ 𝑓 ≠ 0 ∈ 𝒞, ∃ത𝑎 ∈ ℋ ∶ 𝑓 ത𝑎 ≠ 0

Hitting Set
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Why do we care?

• Algorithms

• Complexity Theory

• Lower Bounds

• PIT is intrinsically connected to 

proving circuit lower bounds.

Polynomial Identity Testing

Strong Lower Bounds



35

Border Identity Testing

ℋ is hitting set for ҧ𝒞 if there is a point ത𝑎 ∈ ℋ such 
that 

𝑔 𝜀, ത𝑎 ≠ 𝜀 ⋅ ℎ
where ℎ ∈ 𝔽[𝜀].

Border Hitting Set

• Consider a border complexity class ҧ𝒞. For every 𝑓 ҧ𝑥 ∈ ҧ𝒞, 

there is 𝑔 𝜀, ҧ𝑥 ∈ 𝒞 over 𝔽 𝜀 .

• That means, 𝑓 ത𝑎 ≠ 0

• 𝑔 𝜀, ത𝑎 ≠ 0 does not suffice.

• Therefore, ℋof 𝒞 does not work.

𝑔 𝜀, ҧ𝑥 = 𝑓 ҧ𝑥 + 𝜀 ⋅ 𝑄(𝜀, ҧ𝑥)
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Known Border PIT

• Polynomial time hitting set for ΣΠ = ΣΠ.

• Klivans and Spielman 2001

• Quasipolynomial time hitting set for Σ ∧ Σ.

• Forbes and Shpilka 2013

• PSPACE time hitting set for VP.

• Forbes and Shpilka 2018

• Guo, Saxena, Sinhababu 2019

• Polynomial time hitting set for sum of restricted 

logvariate ABP.

• Bisht and Saxena 2021
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Border PIT of Depth-3 Circuits

𝔽(𝜀) 𝑥1, … , 𝑥𝑛 ∋ 𝑔 =

𝑖

𝑘

ෑ

𝑗

𝑑

ℓ𝑖𝑗

× × ×

+Σ

Π ⋯

Addition Gates

Variables

Σ

top-fanin

Quasipolynomial time hitting set of Σ[𝑘]ΠΣ, for 
any constant 𝑘.

Dutta, Dwivedi, Saxena 2021 

• For circuit of size 𝑠 and constant k, 

𝑠Ο(log log 𝑠) time hitting set.

Polynomial time hitting set of logvariate Σ[𝑘]ΠΣ, 
for any constant 𝑘.

Dutta, Dwivedi, Saxena 2021 
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Future Directions

• Debordering

• Show Σ[𝑘]ΠΣ = Σ[𝑘]ΠΣ or Σ[𝑘] ∧ Σ = Σ[𝑘] ∧ Σ.

• Deborder width-2 ABP, and there by deborder VF.

• Investigate other restricted models. E.g Sum of Read 

Once ABP.

• Identity Testing

• Give polynomial time hitting set for Σ[𝑘]ΠΣ.

• Debordering vs Derandomization.

• Other applications of debordering.


