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Abstract. We observe that proving strong enough lower bounds for
the sum of set-multilinear Algebraic Branching Programs (smABPs) in
the low-degree regime implies Valiant’s conjecture (i.e. it implies general
ABP lower bounds). Using this connection, we obtain lower bounds for
the sum of small-sized general ABPs. In particular, we show that the
sum of poly(n) ABPs, each of size (:= number of vertices) (nd)o(1), can-
not compute the family of Iterated Matrix Multiplication polynomials
IMMn,d for any arbitrary function d = d(n).

We also give a dual version of our result for the sum of low-variate
ROABPs (read-once oblivious ABPs) and read-k oblivious ABPs. Both
smABP and ROABP are very well-studied ‘simple’ models; our work
puts them at the forefront of understanding Valiant’s conjecture.

Keywords: Algebraic Circuits · Algebraic Branching Programs ·
Polynomials · Lower Bounds

1 Introduction

In a pioneering work, Leslie Valiant proposed [38] an algebraic framework to
study efficient ways of computing multivariate polynomials. The computational
model was that of algebraic circuits – layered directed acyclic graphs with ver-
tices in intermediate layers alternately labeled by addition (+) or multiplication
(×), and leaves at the bottom layer labeled with variables x1, . . . , xn or con-
stants of the underlying field F. The circuit inductively computes a multivariate
polynomial f ∈ F[x1, . . . , xn]. Each vertex (gate) performs its corresponding
operation (+ or ×) on the inputs it receives until finally, a designated output
vertex computes the polynomial. A measure of efficiency is the size of the circuit,
that is, the number of vertices in the graph. The depth of the circuit is the length
of the longest path from the input leaves to the output vertex and measures the
amount of parallelism in the circuit. For a general survey of algebraic complexity,
see [7,24,35].

Valiant hypothesized that there are explicit polynomials that do not have
small algebraic circuits computing them, which we now call the VP �= VNP
hypothesis. As algebraic circuits are non-uniform models of computation, com-
puting a polynomial more precisely refers to computing a family {fn}n≥0 of
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polynomials, one for each n. The class VP consists of families of polynomials
whose degree and circuit size are both polynomially bounded in the number
of variables n (denoted poly(n) from now on). On the other hand, if a poly-
nomial has degree poly(n) and the coefficient of any given monomial can be
computed in #P/poly, then the polynomial is in VNP1. It is not difficult to see
that VP ⊆ VNP.

Much like Cook’s original P vs. NP hypothesis in the boolean world, very
little is known in general about Valiant’s hypothesis. A result of Strassen [36]
and Baur-Strassen [5] gives a lower bound of Ω(n log n) against general cir-
cuits. A slightly better lower bound of Ω(n2) is known if the directed acyclic
graph underlying the circuit is a tree – also known as an Algebraic Formula.
All polynomials that have formulas of size poly(n) form the class VF. We refer
the interested reader to the excellent book of Bürgisser [6] for more details on
Valiant’s hypothesis and connections to the Boolean world.

Intermediate in power, and in between circuits and formulas lie Algebraic
Branching Programs (ABPs). An ABP is a layered directed acyclic graph with
edges labeled by affine linear forms. There is a source vertex (s) of in-degree 0
in the first layer and a sink vertex (t) of out-degree 0 in the last layer, and edges
connect vertices in adjacent layers. The maximum number of vertices in any
layer is the width of the ABP and the number of layers is its length. Each path
from s to t computes a polynomial that is the product of the edge labels along
the path. The polynomial computed by the ABP is the sum of the polynomials
computed by all the s � t paths.

An ABP of length � with ni vertices in the i-th layer can be written as a
product of �−1 matrices

∏�−1
i=1 Mi in a natural way: the matrix Mi is of dimension

ni × ni+1 and contains the edge labels between layers i and i + 1 as entries. The
size of the ABP is the total number of vertices in the graph (or equivalently, the
sum of the number of rows of the matrices in matrix representation). Similar to
circuits and formulas, the class of polynomials that have ABPs of size poly(n)
is denoted VBP.

It is known that VF ⊆ VBP ⊆ VP, and conjectured that all the inclusions
are strict. Valiant’s hypothesis is considered more generally as the problem of
separating any of the classes VF,VBP or VP from VNP. Unfortunately (although
probably not surprisingly), general lower bounds in any of these models is hard
to come by. In a recent work, Chatterjee, Kumar, She and Volk [8] proved a
lower bound of Ω(n2) for ABPs. Evidently, the state of affairs is quite similar
to that of circuits. In fact, the polynomial

∑n
i=1 xn

i used in the lower bound is
the same one that Baur and Strassen [5] used for their circuit lower bound.

In this work, we will mainly be interested in set-multilinear polynomials, of
which the Iterated Matrix Multiplication polynomial is an excellent example.
The polynomial IMMn,d is defined on N = dn2 variables. The variable set X
is partitioned into d sets (X1, . . . , Xd) of n2 variables each (viewed as n × n

1 This is simply a sufficient condition for a polynomial to be in VNP, but is enough
for our purpose. A precise definition can be found in [35, Definition 1.3].
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matrices). The polynomial is defined as the (1, 1)-th entry of the matrix product
X1 · X2 · · · Xd:

IMMn,d =

⎛

⎜
⎝

⎡

⎢
⎣

x1,1 . . . x1,n

...
. . .

...
x1,n2−n+1 . . . x1,n2

⎤

⎥
⎦ · · · · · ·

⎡

⎢
⎣

xd,1 . . . xd,n

...
. . .

...
xd,n2−n+1 . . . xd,n2

⎤

⎥
⎦

⎞

⎟
⎠

(1,1)

.

As all monomials are of the same degree d, the polynomial is homogeneous.
It is also multilinear since every variable has individual degree at most 1. Addi-
tionally, every monomial has exactly one variable from each of the d sets of the
partition. Thus it is set-multilinear. Henceforth, by a set-multilinear polynomial
Pn,d over the variable set X = X1 � . . . � Xd (with |Xi| ≤ n for all i ∈ [d]), we
mean a homogeneous multilinear polynomial with the following property: every
monomial m (seen as a set) in Pn,d satisfies |m ∩ Xi| = 1 for all i ∈ [d].

1.1 Our Results

Our first result is a lower bound against the sum of general small-size algebraic
branching programs.

Theorem 1 (
∑

ABP lower bound). Let d < no(1). The polynomial IMMn,d

cannot be computed by the sum of poly(n, d) ABPs, each of size (nd)o(1).

Note that the polynomial IMMn,d has an ABP of size O(nd). The above
theorem shows that this is almost optimal: we cannot reduce the size significantly,
even by using a sum of polynomially many ABPs.

Remark 1. When d > no(1), ABPs of size (nd)o(1) cannot produce monomials
of degree d. Hence, the theorem statement is obtained trivially (in general, a
lower bound of d is trivial for ABPs). But when d < no(1), the model is quite
powerful. In fact, for d < no(1), the power sum polynomial

∑n
i=1 xd

i , that was
used in previous ABP lower bounds, can be computed efficiently using a sum of
n ABPs, each of size (nd)o(1).

A lower bound of n is not trivial for ABPs (unlike circuits and formulas).
Moreover, each edge label can be a general affine linear form, allowing a single
path to generate exponentially many monomials. Notwithstanding that, ABPs
of size (nd)o(1) are still an incomplete model of computation. Nevertheless, the
sum of such ABPs is a complete model – every polynomial of degree less than
no(1) can be written as a (exponential) sum of width-1 ABPs (monomials).

The lower bound of Theorem 1 also holds if we replace IMM with an appro-
priate polynomial from the family of Nisan-Wigderson design-based polynomials.

Our next result is a reformulation of Valiant’s conjecture in terms of a dif-
ferent model: the sum of set-multilinear ABPs (smABPs) on the set of variables
X = X1 � . . . � Xd. An smABP in the natural order is a (d + 1) layered ABP
with edges between layers i and i + 1 labeled by linear forms in Xi. The most
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natural ABP for the polynomial IMMn,d is also set-multilinear: each layer (other
than the first and the last) has n nodes and the edge connecting the p-th node
in layer i to the q-th node in layer i + 1 is labeled by xi,pq.

More generally, for a permutation π ∈ Sd of the variable sets, we say that
an smABP is in the order π if the edges between i-th and (i + 1)-th layer are
labeled by linear forms in Xπ(i).2

We denote by
∑

smABP the sum of set-multilinear ABPs, each in a possi-
bly different order. The width of a

∑
smABP is the sum of the widths of the

constituent smABPs.
We show that in the low-degree regime, superpolynomial lower bounds against∑
smABP imply superpolynomial ABP lower bounds.

Theorem 2 (Hardness bootstrapping). Let n, d be integers such that
d = O(log n/ log log n). Let Pn,d be a set-multilinear polynomial in VNP of
degree d. If Pn,d cannot be computed by a

∑
smABP of width poly(n), then

VBP �= VNP.

The above theorem shows that the sum of set-multilinear ABPs, which looks
quite restrictive, is surprisingly powerful. This is a recurring theme in algebraic
complexity. Interestingly, analogous reductions to the set-multilinear case were
known for formulas [29, Theorem 3.1] and circuits [26, Lemma 2.11]. A series of
works [2,17,19,37,39] on reducing the depth of algebraic circuits culminated in
the rather surprising fact that good enough lower bounds for depth-3 circuits
imply general circuit lower bounds. The above theorem is in a similar vein. The
model of

∑
smABP is particularly appealing to study since smABPs are one of

the most well-understood objects in algebraic complexity.
Recently, [22] proved near-optimal lower bounds against set-multilinear for-

mulas for a polynomial in VBP. Surprisingly, if the polynomial were computable
by an smABP, we would obtain general formula lower bounds. This further illus-
trates the need to study smABPs.

Non-commuting Matrices Make it Powerful

Note that if the matrices in the smABP were commutative, we can treat∑
smABP as a single smABP, against which we know how to prove lower bounds

(see Sect. 1.2). So in order to lift the lower bound to VNP, it is essential that we
understand the sum of smABPs with non-commuting matrices (see Sect. 1.3 for
a detailed discussion).

Arbitrarily Low Degree Suffices

The low-degree regime has recently gained a lot of attention. In a breakthrough
work, Limaye Srinivasan and Tavenas [23] showed how to prove superpolynomial
2 This definition differs slightly from that of Forbes [13] as it does not allow affine

linear forms as edge labels. We use this definition as the ABPs we encounter are of
this more restricted form and proving lower bounds for them is sufficient.
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lower bounds for constant-depth set-multilinear formulas when the degree is
small (set-multilinear lower bounds against arbitrary depth were known before
[26,28,31], but degenerated to trivial bounds when the degree was small). They
were able to then escalate the low-degree, set-multilinear lower bounds to general
constant-depth circuit lower bounds. The theorem above shows that the low-
degree regime can be helpful in proving lower bounds for ABPs as well.

A Spectrum of Hardness Escalation

We also give a smooth generalization of Theorem 2 using more general versions
of both set-multilinear polynomials and smABPs. The variable set is partitioned
as before: X = X1 � . . . � Xd with |Xi| ≤ n for all i.

A polynomial g is called set-multi -k-ic with respect to X if every monomial
of g has exactly k variables (with multiplicity) from each of the d sets. That is,
for a monomial m (seen as a multiset) in the support of g, |m ∩ Xi| = k. When
k = 1, the polynomial g is set-multilinear.

We call an ABP of length kd a set-multi-k-ic ABP (denoted sm(k)ABP) if
every layer has edges labeled by linear forms from exactly one of the sets Xi,
and there are exactly k layers corresponding to each Xi. As a special case, an
sm(1)ABP is just a set-multilinear ABP as defined before.

Theorem 3 (Hardness bootstrapping spectrum). Let n, d, k be integers
such that min(dkd, (kd)d) = poly(n), and let Pn,d,k be a set-multi-k-ic polynomial
in VNP of degree kd. If Pn,d,k cannot be computed by a

∑
sm(k)ABP of width

poly(n), then VBP �= VNP.

Remark 2. We note that Theorem 2 is an immediate consequence of Theorem 3
when k = 1. An added advantage of this generalization is the flexibility with the
degree of the hard polynomial. For example, if k = d = O(log n/ log log n), the
degree of the polynomial we are allowed is O(log2 n/(log log n)2). In contrast,
Theorem 2 could only work when the degree is O(log n/ log log n).

The set-multi-k-ic ABP is inspired from the well-studied multi-k-ic depth-
restricted circuits and formulas, initiated by Kayal and Saha [18]. We encourage
readers to refer [32, Chapter 14] and references therein for a comprehensive
discussion.

1.2 The Sum of ROABPs Perspective: The Arbitrarily Low Variate
Case

One can also view Theorem 2 through the lens of another well-studied model in
the literature, first defined by Forbes and Shpilka [12]. An algebraic branching
program over the variables (x1, . . . , xn) is said to be oblivious if, for every layer,
all the edge labels are univariate polynomials in a single variable. It is further
called a read-once oblivious ABP (or a ROABP) if every variable appears in at
most one layer.
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A ROABP in the natural order is n+1 layered ABP where the edges between
layers i and i + 1 are labeled by univariate polynomials in xi of degree d. If,
instead, the labels were univariate polynomials in xπ(i) for some permutation
π ∈ Sd of the variables, then we say that the ROABP is in the order π.

The computation that a ROABP (or equivalently, an smABP) performs is
essentially non-commutative since the variables along a path get multiplied in
the same order π as that of the ROABP (smABP). Nisan [25] introduced the
powerful technique of using spaces of partial derivatives to study lower bound
questions in non-commutative models. This technique can be used to calculate
the exact width of the ROABP computing a polynomial.

Following our definition for smABPs, we denote by
∑

RO the sum of
ROABPs, each possibly in a different order. The width of a

∑
RO is the sum

of the widths of the constituent ROABPs. A version of Theorem 2 can also be
stated for this model. In contrast to the case of smABPs, we will be interested
in the dual low-variate regime.

Corollary 1 (Low variate
∑

RO). Let n, d be integers such that
n = O(log d/ log log d). Let f ∈ VNP be a polynomial on n variables of indi-
vidual degree d. If f cannot be computed by a

∑
RO of width poly(d), then

VBP �= VNP.

The low-variate regime has also recently been shown to be extremely impor-
tant. The Polynomial Identity Testing (PIT) problem asks to efficiently test
whether a polynomial (given as an algebraic circuit, for example) is identically
zero. In the black-box setting, we are only allowed to evaluate the polynomial
(circuit) at various points. Hence, PIT algorithms are equivalent to the con-
struction of hitting sets – a collection of points that witness the (non)zeroness
of the polynomial computed by the circuit (see [33,34] for a survey of PIT and
techniques used).

Recently, several surprising results [1,16,21] essentially conclude that hitting
sets for circuits computing extremely low-variate polynomials can be “boot-
strapped” to obtain hitting sets for general circuits. See the survey of Kumar
and Saptharishi [20] for an exposition of the ideas involved.

We now state a corollary of Theorem 3 analogous to Corollary 1. An oblivious
ABP is said to be read -k if each variable xi appears in at most k layers. We
denote the sum of read -k oblivious ABPs as

∑
R(k)O. Once again, the width of

a
∑

R(k)O is the sum of the widths of the constituent branching programs.

Corollary 2. Let n, d, k be integers such that min(nkn, (kn)n) = poly(d). Let
f ∈ VNP be a polynomial on n variables of individual degree d. If f cannot be
computed by a

∑
R(k)O of width poly(d), then VBP �= VNP.

1.3 Proof Techniques and Previous Work

Simulating ABPs Using Sum of smABPs. Unlike the boolean world, both
the degree d of the polynomial, and the number of variables n are important
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parameters in algebraic complexity. Often times, it is reasonable and useful to
impose restrictions on one of them. Even in the definitions VP and VNP, we
require that the degree d be restricted by a polynomial in n (see [15] for more
discussion on the motivation behind this choice). Further restrictions on the
degree help in proving better structural results which would otherwise be pro-
hibitively costly to perform.

In order to prove Theorem 2, we perform a sequence of structural transfor-
mations to the algebraic branching program to obtain a

∑
smABP. We first

homogenize the ABP (Lemma 2), i.e., we alter the ABP so that every vertex
in the ABP computes a homogeneous polynomial. In addition, we will ensure
that the ABP has d layers and all the edge labels are linear forms. The homog-
enization of ABPs to this form was folklore. Subsequently, we set-multilinearize
the branching program (Lemma 1). This step is only efficient in the low-degree
regime since what we obtain is a sum of dO(d) set-multilinear ABPs.

With the reduction in place, superpolynomial lower bounds for
∑

smABP
imply the same for ABPs, albeit in the low-degree regime. The proof of Theorem
3 is similar.

Lower Bounds for the Sum of ABPs. Our proof of the
∑

ABP lower bound
(Theorem 1) uses the implicit reduction of Theorem 2 to

∑
smABP. Using

Nisan’s characterization [25] mentioned before, we can prove exponential lower
bounds against single smABPs (ROABPs), but the characterization does not
extend to their sums. There has been progress in handling the sums in recent
years, which we now briefly describe.

Arvind and Raja [4] proved a superpolynomial lower bound for the Perma-
nent polynomial against the sum of sub-linear many ROABPs (the bound is
exponential if the number of ROABPs is bounded by a constant). Ramya and
Rao [27] showed that a sum of sub-exponential size ROABPs computing the
multilinear polynomial defined by Raz and Yehudayoff [30] needs exponentially
many summands. Ghosal and Rao [14] showed an exponential lower bound for
the sum of ROABPs computing the multilinear polynomial defined by Dvir,
Malod, Perifel and Yehudayoff [11], provided each of the constituent ABPs is
polynomial in size.

Unfortunately, these results do not imply general ABP lower bounds using
our hardness escalation theorems, as they only work in regimes where the degree
and number of variables are comparable. Viewed differently, they cannot handle
a sum of d! smABPs (or n! ROABPs) which is necessary to prove lower bounds
in our low-degree (low-variate) regime. In a very recent work Chatterjee, Kush,
Saraf and Shpilka [9] improve the bounds in the above works and also prove
superpolynomial lower bounds against the sum of smABPs when the degree is
d = ω(log n). Improving this to work for d = O(log n/ log log n) would have
dramatic consequences.

Fewer results are known about read -k oblivious ABPs. They were studied in
[3] as a natural generalization of ROABPs and a lower bound of exp(n/kO(k))
for a single read -k oblivious ABP was shown. It remains open to improve this
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result to prove non-trivial lower bounds when k is large, as well as to prove
lower bounds for sums of read -k oblivious ABPs. When k is small, the results of
Ramya and Rao [27] extend to the sum of multilinear k-pass ABPs, a restriction
of read -k oblivious ABPs in which the variables are read k times in sequence,
each time in a possibly different order.

We demonstrate a way to handle our low-degree regime in certain cases. To
prove lower bounds for the sum of smABPs, we use the partial derivative method,
introduced in the highly influential work of Nisan and Wigderson [26]. We show
that the partial derivative measure μ(·) is large for our hard polynomial but small
for the model. In fact, a majority of the lower bounds in algebraic complexity
(including the results described above) use modifications and extensions of this
measure. For a comprehensive survey of lower bounds and the use of partial
derivative measure in algebraic complexity, see [10,32].

We work with the polynomial IMMn,d, which gives us more flexibility in
independently choosing n and d. Unfortunately, this choice creates a two-fold
problem. The fundamental one is that IMMn,d has a small smABP, as we saw
before. So we can never prove a superpolynomial lower bound for even a single
poly(n, d) sized smABP (let alone their sum). One might try to avoid this by
choosing a different hard polynomial that gives similar flexibility, perhaps some-
thing from the family of Nisan-Wigderson design-based polynomials. But in fact,
the complexity measure μ is also maximal for IMMn,d. Hence, the usual partial
derivative method cannot be used to prove lower bounds against any model that
efficiently computes IMMn,d. Be that as it may, it might still be possible to use
the same technique to prove lower bounds for restrictions of the model. We are
able to do this when the smABPs are sub-polynomial in size. It also enables
us to handle extremely large sums of smABPs (including those that occur from
considering sums of multiple ABPs).

This approach works in the low-degree regime, since our reductions are effi-
cient if the degree is very small. To handle higher degrees, we note that IMMn,d′

with d′ small can be obtained as a set-multilinear restriction of IMMn,d. There-
fore, our lower bounds translate to higher degrees to finally give superpolynomial
lower bounds against sums of small-sized general ABPs.

2 Hardness Bootstrapping Spectrum

We begin by showing that in the low-degree regime, a small sized ABP can be
simulated by a

∑
smABP of small width. This is very much in the spirit of the

set-multilinearization result of Limaye, Srinivasan and Tavenas ([23], Proposition
9) for small-depth circuits. Due to space constraints, we omit detailed proofs
which can be found in the full version.3

Lemma 1 (ABP set-multilinearization). Let Pn,d be a polynomial of degree
d, set-multilinear with respect to the partition X = X1 � . . .�Xd where |Xi| ≤ n
for all i ∈ [d]. If Pn,d can be computed by an ABP of size s, then there is a∑

smABP of width dO(d)s computing the same polynomial.
3 Full version - https://www.cse.iitk.ac.in/users/nitin/papers/sumRO.pdf.

https://www.cse.iitk.ac.in/users/nitin/papers/sumRO.pdf
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We immediately obtain Theorem 2 as an easy consequence. We omit the
proof. In order to prove Lemma 1, we first homogenize the ABP (similar to the
approach of Raz [29] and LST [23]). Any vertex v in an ABP can be thought of
as computing a polynomial corresponding to the ‘sub-ABP’ between the source
s and the vertex v. An ABP is homogenous if the polynomial computed at every
vertex is homogenous.

Lemma 2 (ABP homogenization). Let f(x1, . . . , xn) be a degree d polyno-
mial. Suppose that f can be computed by an ABP of size s. Then there is a
homogeneous ABP of width s and length d that can compute the same polyno-
mial. Furthermore, all the edge labels are linear forms.

The above lemma is “folklore” with the proof idea already present in [25].
As our central argument, we show that this homogeneous ABP can be efficiently
set-multilinearized.

Proposition 1. Consider a set-multilinear polynomial Pn,d over the variable
set X = X1 � . . .�Xd (with |Xi| ≤ n for all i ∈ [d]) computed by a homogeneous
ABP of width w and length d. Then, there is a

∑
smABP of width d!w computing

Pn,d.

With this transformation in hand, we can complete the reduction and obtain
Lemma 1. The proof of Theorem 3 follows the template of Theorem 2. We
begin with ABP homogenization, followed by a structural transformation to
the sum of set-multi-k-ic ABP. The superpolynomial lower bound assumption
on

∑
sm(k)ABP gives the desired separation result. The following lemma is

analogous to Lemma 1.

Lemma 3 (ABP to
∑

sm(k)ABP). Let P be a set-multi-k-ic polynomial with
respect to the partition X = X1 � . . . � Xd where |Xi| ≤ n for all i ∈ [d]. If P
can be computed by an ABP of size s, then there is a

∑
sm(k)ABP of width

s · (
d+kd

d

)
computing the same polynomial.

It is straightforward to prove Theorem 3 using the above lemma. The proof
is similar to Theorem 2 and we omit it.

3 Lower Bound for the Sum of ABPs

We are now ready to show that in the low degree regime, the Iterated Matrix
Multiplication polynomial IMMn,d cannot be computed even by a polynomially
large sum of ABPs, provided that each of the ABPs is small in size. We begin
by stating a lower bound for

∑
smABP in the low-degree regime. Note that in

this regime, IMM has an smABP of width O(nd). The lemma shows that even
using the sum of multiple smABPs cannot help in reducing the width.

Lemma 4. Any
∑

smABP computing the polynomial IMMn,d with
d = O(log n/ log log n), must have width at least nΩ(1).
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Suppose we had to prove the lower bound of Theorem 1 for a single ABP com-
puting IMM. We could then use Lemma 4 above in conjunction with Lemma 1
to conclude the result. But when we are dealing with a sum of ABPs, we need
to be more careful in how we set-multilinearize since the ABPs no longer need
to compute set-multilinear or even homogenous polynomials.

4 Discussion and Open Problems

In order to separate VBP from VNP, we need to prove super-polynomial lower
bounds against

∑
smABP for a polynomial in VNP that we expect to be hard.

As noted above, the IMM polynomial is in VBP (in fact, it is a canonical way to
define the class VBP) and cannot be used for such a separation. Our Theorem 1
also holds for a polynomial from the Nisan-Wigderson family of design-based
polynomials that is in VNP and is a better candidate.

A first step toward proving ABP lower bounds would be to prove any non-
trivial lower bounds against the sum of smABPs in the low degree regime, i.e.
prove some lower bound for the sum of d! smABPs. Another interesting direction
is to show a reduction from ABPs to the sum of fewer than d! smABPs, with a
possibly super polynomial blow up in the smABP size. This would still lead to
ABP lower bounds if we can prove strongly exponential lower bounds against
the sum of (fewer) smABPs. This question remains open as well.
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